
NUTRIENT INFORMATION

Vitamin K

T he term vitamin K describes a class of fat-soluble
vitamers, each of which function as a cofactor for
the γ -carboxylase enzyme. Carboxylation of specific

glutamic acid residues enables vitamin K–dependent proteins
to bind calcium, which confers their function. Vitamin K is
required for normal coagulation because several proteins in
the coagulation cascade are vitamin K dependent. Additional
vitamin K–dependent proteins have been identified in other
tissues, such as cartilage, bone, and vascular tissue, suggesting
that vitamin K is involved in multiple aspects of human health
and disease.

Deficiency
Newborns are given vitamin K at birth to prevent vitamin K–
deficient bleeding, which can otherwise occur because vitamin
K does not cross the placenta (1). Beyond the neonatal period,
vitamin K deficiency is rare. A recent analysis of the 2011–
2012 NHANES indicated that vitamin K intakes have overall
declined in the last 2 decades and, indeed, over half of adults
>70 y old do not meet vitamin K dietary recommendations
(2). Although this does not manifest as overt vitamin K
deficiency, low vitamin K intakes and status have been linked
to increased risk of certain age-related comorbidities, such
as cardiovascular disease. However, results of vitamin K
supplementation trials have been equivocal (3).

Dietary Recommendations
There is >1 naturally occurring form of vitamin K. Phylloqui-
none (vitamin K1) is plant-based, and menaquinones (collec-
tively referred to as vitamin K2) are mostly synthesized by bac-
teria. Menaquinones differ structurally from phylloquinone in
the saturation and length of their side chain, with the side chain
length differentiating the menaquinone forms. Menaquinone-
4 (MK4), for example, has an unsaturated side chain containing
4 isoprenoid units. The current Adequate Intakes (AIs) for
vitamin K are based on the median phylloquinone intakes
reported in NHANES III (1988–1994) and have not been
revisited since 2001. The current AIs expressed as micrograms
phylloquinone per day are: infants 0–6 mo, 2.0 μg/d; 7–12 mo,
2.5 μg/d, 1–3 y, 30 μg/d; 4–8 y, 55 μg/d; 9–13 y, 60 μg/d;
14–18 y, 75 μg/d; ≥19-y females, 90 μg/d; and ≥19-y males,
120 μg/d (4, 5). There are no increases during pregnancy
or lactation. Some have recently suggested there should be
a separate dietary requirement for menaquinones (6), claim-
ing some menaquinones have unique beneficial properties.
However, this claim is not well supported by the scientific
literature (3). Some menaquinones are now being incorporated
into food composition databases, including the USDA’s Food
Data Central, but the overall menaquinone content of the
food supply has not yet been comprehensively analyzed,
which is necessary to better understand the contribution of

these forms to total vitamin K intakes and ultimately, overall
health.

Food Sources
Green leafy vegetables and vegetable oils are the main dietary
sources of phylloquinone. Mixed dishes and convenience foods
were also recently identified as important contributors to
phylloquinone intake in the United States, presumably from
the addition of oils during food preparation, which challenges
the assumption that phylloquinone intake is a marker of a
healthy diet (2). MK4 is found in some animal-based foods,
and phylloquinone is converted to MK4 in certain tissues
(7). Menaquinones 5 to 13 are synthesized by some bacteria
and are present in some fermented dairy products, meat,
and vegetables (7–9). Menaquinones are also synthesized by
bacteria in the colon, but their contribution to vitamin K
nutritional status is not substantial because their absorption
from the colon is poor (10).

Clinical Uses
With the exception of vitamin K being given to newborns
prophylactically to prevent vitamin K–deficient bleeding (1),
vitamin K is not used for clinical purposes.

Toxicity
There are no known toxicities associated with vitamin K in
healthy individuals. People taking the vitamin K antagonist
Coumadin (warfarin) should work with their health care
provider to monitor their vitamin K intakes.

Recent Research
The same menaquinones that are produced by gut bacteria
are also abundant in the food supply. However, little is known
about how dietary vitamin K influences the gut microbiota.
Mice fed a low-vitamin-K diet had a significantly different
cecal microbial composition compared with mice fed diets
supplemented with phylloquinone or different menaquinone
forms. Surprisingly, the form of vitamin K in the diet did
not influence the cecal microbial composition, suggesting the
amount of vitamin K in the diet is more influential than
the form consumed because the gut bacteria remodel what
is absorbed (10). A similar pattern is emerging with respect
to composition and distribution of vitamin K metabolites in
nonhepatic tissues. Through use of stable isotopes in mouse
models, it was determined that intakes of phylloquinone
and various menaquinones, individually and in combination,
had equivalent conversion to MK4 in nonhepatic tissues,
such as brain (11). Through use of CRISPR/Cas9 (clustered
regularly interspaced short palindromic repeats/CRISPR-
associated protein 9) technology, it has been established that
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UbiA prenyltransferase domain containing 1 (UBIAD1) is
the sole enzyme responsible for the conversion of various
quinones to MK4 (12). UBIAD1 is a critical enzyme in the
cholesterol biosynthesis pathway, and UBIAD1-deficient mice
fail to thrive. However, these UBIAD1-deficient mice do not
develop signs of overt vitamin K deficiency, which has been
interpreted as an indication that these animals obtain sufficient
vitamin K to support carboxylation of the hepatic vitamin
K–dependent coagulation protein but that MK4 is involved
in nonrelated physiological roles that influence these animals’
ability to thrive. The UBAID1-deficient mouse model offers a
unique opportunity to elucidate the roles of MK4 beyond that
of carboxylation of vitamin K-dependent proteins (12).

Joint tissues contain multiple vitamin K–dependent pro-
teins, including matrix Gla protein (MGP). Calcium deposi-
tion in cartilage can be characteristic of osteoarthritis (13), and
MGP inhibits soft tissue calcification when it is carboxylated,
which requires vitamin K. In recent population-based studies,
warfarin use was associated with a 2–3-fold higher risk of
knee and hip osteoarthritis development and progression, and
with a 1.6-fold higher risk of joint replacement, compared
with treatment with anticoagulants that are not vitamin K
antagonists (14, 15). Higher vitamin K intakes and vitamin
K status have also been associated with a lower prevalence
(16) and progression (17) of osteoarthritis. Randomized
clinical trials designed to evaluate the effect of vitamin K
supplementation on osteoarthritis are needed.
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